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It is often necessary that the joint characteristics should be determined in the early stage of the
vehicle body design. The researches on identification of joints in a vehicle body have been
performed until the recent year. In this study, the joint characteristics of vehicle structure were
expressed as the condensed matrix forms from the full joint stiffness matrix. The condensed joint
stiffness matrix was applied to typical Tvtype and Edge-type joints, and the usefulness was
confirmed. In addition, it was applied to the real center pillar model and the full vehicle body
in order to validate the practical application.
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1. Introduction

A vehicle body structure has the various joints
that are complicatedly connected. The pillar, the
roof rail and the rocker are the typical joints in
vehicle body structure. These joints consist of the
inner panels, the outer panels and the
reinforcements, which are connected by spot
welding. It is well known that the joint
characteristics can impact on the static and the
dynamic behavior of the vehicle structure.

In order to identify and express these joint
characteristics, Chang (1974) studied to represent
the flexibility of body connections, or joints,
using torsional spring element. It is a conven­
tional analysis technique that is based on the rigid
connections only, neglecting its flexibility. It was
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found that it could result in almost 50% error
when the stiffness of the whole vehicle body
structure is calculated. Moon et al. (1995) studied
on the calculation technique of the torsional
spring constants through a static test, in order to
consider the flexibility of the joint. They
discussed that the torsional spring constants,
which were calculated from the experiment, could
be improved, in turn, by a sensitivity analysis.
Although this approach has been commonly
adopted until now, the significant error could be
involved. I think the reasons are as follows. Like
above approach, if the joint characteristics are
represented with scalar springs only, the only
diagonal terms would be considered in the
stiffness matrix, while the coupled terms would be
ignored.

Moreover, not only it isn't easy to determine the
spring constants from the displacements corre­
sponding to the pre-assigned loads in the static
test, but also those displacements mostly involve
the effect of the desired load as well as other
loads, which are not desired.

Some research efforts were diverted from re­
presenting the joint characteristics into the scalar



1640 Myung-Won Suh, Won-Ho Yang and Jonghwan Suhr

Therefore

The kinetic and strain energy of the system are

(6)

(I)[M]{ u }+[K]{ U }={ O}

Solving for { uo } gives

{ uo}= - [Koo]-l[Koa]{ Ua} (4)

L KoaJ {ua}L KooJ {uo }={ 0 } (3)

[[Maa] [Mao]] {ua} +[[Kaa] [Kao]] {Ua} ={ O} (2)
[Moo] [Moo] u, [Koa] [Koa] u«

From the second of the two matrix Eq. in (2),

the assumption is made that the relationship be­
tween {uo} and {Ua} is not affected by the

inertia terms. In other words, slave DOFs are

assumed to move quasi-statically in response to

the motion of master DOFs. Thus, Equation now

reduces to

2. Condensation

Very often some ofDOFs are of only secondary

importance. The analysis may, therefore, be car­

ried out more efficiently if unwanted DOFs can

be eliminated by some procedure while

maintaining the acceptable accuracy. Condensati­

on is the process of reducing the number of

DOFs. It involves a reformulation of the stiffness

and the mass matrices based on partitions of a
stiffness matrix. Guyan (1965) expanded "static

condensation" into dynamic problem fields.
Consider the equation of free vibration

Total degree of freedom { u} are partitioned

into a set { Ua } termed master degree of freedom,

which are to be retained for the analysis, and a set

{ Uo } termed slave degree of freedom, which are

to be eliminated.

Partitioning [M] and [K] in a compatible

manner, Eq. (I) becomes

usefulness of this approach is confirmed by the

various example problems including the body

structure of the passenger vehicle.

springs. Kim, et al. (1995) studied how to derive

the joint stiffness matrix considering the flexibility

of the T-type joint. which has a box cross-sec­

tion. This idea was fundamentally based on the

strain energy concept. They defined the joint

compliance matrix from the relationship between

a moment and its rotational degree of freedom.

The joint compliance matrix was calculated by
differentiating the strain energy of the joint part

with respect to the external moments. The joint

stiffness matrix can be obtained from the inverse

of this joint compliance matrix. However, the
application of the method is limited to the joint

structure that has a simple cross-section such as a

box shape. The joint structures in vehicle, which

have very complicated cross-section make a

practical application more difficult and
cumbersome. Katakarni, et al. (1990) derived the

joint stiffness matrix for much more general joint

structure. Two different finite element models

were built for a joint structure in order to obtain

the joint stiffness matrix. One was a detailed joint

model using shell element, the other was a sim­
plified joint model using beam element with rigid

joint. It is natural that there should be differences
of stiffness between these two models. In order to

derive stiffness matrices of the two models, FE

analyses were necessary. The displacements,

especially the rotational ones, corresponding to

assigned load were calculated.
The above two methods are based on the rela­

tionship between the various load sets and these

displacements. A number of calculations and FE

analyses are required. It seems that these are too

intricate to apply to the practical problems.

Although the various studies have been
performed until recent years, the difficulty and the

complexity of the procedures have hindered the

practical application to the vehicle body struc­

ture. In this study, a practical method for
identifying and expressing the joint characteristics

in complete matrix form is presented. The

calculations of displacements corresponding to

pre-assigned loads are not necessary. The joint

characteristics of the vehicle body structure can be

very easily expressed in the condensed matrix

form. A joint stiffness matrix is derived. The
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where

Fig. 1 The joint with shell elements

(14)

(13)(

[KIl] [KI2] [K13J)
[K]; = [KilJ [&] [&]

[Kil] [& J [&]

where [ Ku ] , [ K12] , ' " [1<JJ] are 3 x 3 matrix and

the subscript I, 2 3, denote the branch number.

Similarly, 9 x 9 condensed joint mass matr ix

can be expressed from the full joint mass matrix
fromEq. ( 10) .

(

[MaJ [M12] [MI3J)
[M]j= [MZ1] [M22J [M23J

[M31] [M32] [Md

The jo int characteristics are obtained as the

condensed form from the full stiffness matrix and

mass matr ix. In th is study, the proposed method is
called as CJM (Condensed Jo int Matrix) method.

In this method, the calculation of the dis­

placements corresponding to the assig ned loads is
not necessary to formulate the joi nt matrix. The

joi nt characteristics of a vehicle body structure,

which ha s the complicate shapes, can be very
easily expressed in the condensed matri x form. In

addition , not only the joint stiffness matr ix, but

also the jo int mass matri x ca n be obtained.

8z )

In order to apply the condensation to the joint

model, the tota l OOFs have to be partitioned into

master OOFs and slave OO Fs. Ma ny research
papers j I] , [2], [3], [4], [6J have shown that the

rot at ion al stiffness in joint part has a dominant

effect on the behavior of a joint structure. Thus,

all the rot at ional OOFs, which are activa ted on

the imagina ry point, Pi are selected as master

OOFs for each branch member. The other OO Fs

on the joint structure modeled with shell elements

are selected as slave OOFs. The number of maste r
OOFs would be 9 in this case of Fig. 1, such as

Eq. (12).

{ 8 } = [ 8 (1) 8(1) 8 (1) 8(2) 8 (2) 8 (2)master X')/' z, x , Yt z ,

8(3) x , 8(3)y, 8 (3).l T ( 12)

where superscri pt ( I) , (2) , (3) ind icate the

br anch number and x, y, z are the coordinate axes.
From Eq. ( I) to (9), 9 x 9 condensed joi nt

stiffness matr ix can be expressed from the full
joint stiffness matrix, as follows.

(7)

I I

.to

.to
z
• y

L::- x

1'3

3. CJM (Condensed Joint Matrix)
Method

In this sect ion, the method for calculating the

jo int characteristic matrix from the full joint

matrix using condensation is explained. Firstly,
the joint with three branch members is consi­

dered. The joint is modeled by shell elements as
shown in Fig. 1. All the nodes at the end of

branch i are subjected to one imaginary po int, Pi ,

such as F ig. 1. It is assumed that each imaginary
po int, Pi has only three rotation al OOFs (Bx, By,

[M )R{ a; }+ [K]R{ Ua }= { 0 } (II)

as the equation of motion.
[KY, [M]R is symmetric matrix. Though [K]

is a banded matrix and [M] is a di agonal matrix,

[K)R and [M )R are the full matrices. With respect
to the selection of the master OOFs, G. C. Wright

and G. A. Mile s ( 197 I) suggested that the slave

OOFs should be chosen in the region of large

stiffness and the master OOFs should be selected
in regions of large flexibility to have more accu­

rate solution.

[M ] R = [R] T[M ][R], [K ]R = [R)T[K][R] (8)

Substituting [ R] of (5) into (8) gives

[K]R= [Kaa]- [Kao]- [Koo ] -I[Koa] (9)
[MY =[Mao] - [ll-'lao][Koo]-l[Koo] - [Ka,, )

[Koo )-l[Moa] +(Ka,,)[Koo] - l[Moo][Koo]-l[Koa] ( 10)

Substituting (6) , (7) into Lagrange's equation

gives
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Fig. 2 The T-type joint structure
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Fig, 3 A detailed joint model with shell elements

2
Mx

Mz

3

3

eJM

Beam element

1

1

Fig. 5 A proposed jo int model with elM

My
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Beam element

Mz) are applied to the tip of branch 2, as shown

in Fig. 3. The analysis results of the static stiffness
are listed in Table 1. The rigid model has max. 9%

larger static stiffness than shell model while the

ClM model has the tr ivial errors within 2% in

comparison with shell model. To analyze the

Fig. 4 A simplified joint model with beam elements

T'-rype joint structure, which has a box section,

is considered as the first application. The joint

structure can be divided by two parts as shown in

F ig. 2. which is the joint part which don't have to

be modeled by straight beam for its flexibility,

and the beam part which can be assumed by

constant-area-beam for a general membrane.
Three different finite element models for T-type

joint structure are bu ilt to evaluate the static and

the dynamic stiffness . One is a detailed joint

model. Its joint part is modeled with shell element

and its beam part is modeled with beam element.

It is called "shell model", as shown in Fig. 3. The

second is a simplified joint model using only
beam element with rigid joint. It is called "rigid

model", and both the joint part and the beam part

are modeled with beam element, as shown F ig. 4.

The third, called "CJM model", is a proposed

joint model using CJM method, as shown Fig. 5.

The joint part is modeled with the condensed

joint characteristic matrix. This matrix is derived
from the joint part modeled with shell element.

The beam part is modeled with beam element, in

the same way as the above two joint models.

NASTRAN Ver. 68 was used and the shell

models and the rigid models were modeled re­
spectively by QUAD4 and TRIA3 elements, and

BEAM elements.

To analyze the static stiffness , each tip of

branch I and 3 are fixed , and moments (Mx, My,

4. Application of eJM to T-type Joint
Structure
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Table 1 Normalized displacement of T-type joint
structure for static stiffness

Shell I Rigid model ClM model
model I (error) (error)

Bx/(Bx}. 1.0 0.954(4.6%) 1.0(0%)

M(By}. 1.0 0.910(9.0%) 1.019( -1.9%)

Bz/{Bz}. 1.0 0.972 (2.8%) 1.017 (-1.7%)

Table 2 Natural frequency (Hz) of T'-type joint
structure for dynamic stiffness

Mode
Shell Rigid model ClM model

model (error) (error)

1st 157.7 179.1(13.6%) 152.3(-3.4%)

2nd 250.4 263.6(5.0%) 251.1(0.3%)

3r d I 306.9 298.3(-2.8%) 325.3(6.0%)

dynamic stiffness, all the boundary conditions are

set to be free. The natural frequencies, which may

be considered as the dynamic stiffness, are listed

in Table 2. All of the three models have the same

mode shape in each natural mode. The rigid

model has approximately 14% larger natural fre­

quency than shell model in the 1st natural mode,

while the ClM model's natural frequencies have

the slight errors within 6% in comparison with

shell model. Table I and 2 show very good

correlation between shell and ClM model in both

static and dynamic response.

The general trend, that a simplified joint model

using only beam element has a larger static and

dynamic stiffness than a detailed joint model

using shell elements, is verified.

5. Application of CJM to Edge-type
Joint Sturcture

Edge-type joint structure, which has a box

section, is considered as the second application.

The joint structure can be divided by two parts as

in Fig. 6. As for the T'-rype joint structure, three

different finite element models, which are shell

model, rigid model and ClM model, are built for

Edge-type joint structure to evaluate the static

and the dynamic stiffness.

The analysis results of the static and dynamic

stiffness are listed in Table 3, and 4. Tables 3 and

Table 3 Normalized displacement of Edge-type
joint structure for static stiffness

Shell Rigid model ClM model
model (error) (error)

Bx/{Bx}. 1.0 0.889 (/1.0%) 0.997 (0.3%)

By/{By}. 1.0 0.890(11.0%) 0.892 (11.0%)

Bz/{Bz}s 1.0 1.014(1.4%) 0.992(0.8%)

Table 4 Natural frequency (Hz) of Edge-type joint
structure for dynamic stiffness

Mode
Shell Rigid model I ClM model
model (error)

I
(error)

1st 141.6 161.2(13.8%) I 138.1 (-2.5%)I

2nd 159.9 181.9(13.8%) 155.1(-3.0%)
yd 167.8 206.4(23.0%) 166.8(-0.6%)

Beam part

loint part

Fig. 6 The Corner-type joint structure

4 show the same tendency as Tables I and 2,

respectively. All of the three models have the

same mode shape in each natural mode. The rigid

model has approximately 23.0% larger natural

frequency than shell model in the ]Cd natural

mode, while the ClM model's natural frequencies

have the negligible errors within -0.6% in com­

parison with shell model.

6. Application of CJM to Center
Pillar of Passenger Car

The actual center pillar of the passenger car is

considered as the third application. Three differ­

ent finite element models are built to evaluate
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Table 5 The model features of the center pillar
model

Shell
model

Rigid
model

ClM
model

,
",,,

Table 6 Normalized displacement of lower center
pillar for static stiffness

Table 7 Natural frequency (Hz) of lower center
pillar for dynamic stiffness

Mode
Shell ! Rigid model ClM model
model (error) (error)

1st 1.51 1.98(31.1%) 1.34( -11.3%)

2nd 2.42 - 2.34( -3.3%)

3r d 2.89 3.18(10.0%) 2.82( -2.4%)

,////

good correlation between shell and ClM model.

Even though the ClM model has much fewer

DOFs than shell model. the rigid model has
approximately 31% larger natural frequency than

shell model in the 1st natural mode, while the

ClM model has the reasonable errors within 10%.
It is verified that it isn't good for the rigid

model to be applied to the practical problem,

because of the complex cross sect ions and the

crooked curvatures of a real center pillar model.

Fig. 7 A detailed lower center pillar model of pas­
senger car with shell elements

222192

Shell Rigid model ClM model
model (error) (error)

8x/{8x}s 1.0
8.862e-05 1.028

(-) ( -2.8%)

8y/{8y}s 1.0 I
0.151 1.087

(84.9%) ( -8.7%)

tV{8z }s 1.0
1.545e-02 1.067

( - ) ( -6.7%)

Total number I' 7393
of OOFs I

static and dynamic stiffness, as listed in Table 5.

The actual center pillar is div ided by the joint

part, and the beam part which can be assumed by

constant-area-beam as shown in Fig. 7. The joint

part of a detailed pillar model is modeled with 2,

422 rectangular and 363 triangular shell elements.
The spot-welding part is modeled with rigid

elements.

The analysis results of the stat ic stiffness are

listed in Table 6. The boundary condition is

determined and each moment (Mx, My, Mz) is

applied, similarly to Fig. 3 or T'-type joint struc­

ture application. The ClM model has much fewer

DOFs than shell model, which are 222 and 7,393,
respectively. The ClM model has the slight errors

within 9%, while the rigid model has much larger

static stiffness than shell model. The rigid model

shows excessively stiff results. The natural fre­
quencies with the free boundary condition are

listed in Table 7. The analysis results of the

natural frequencies and the mode shapes show

7. Application of eJM to Body Vehicle
Structure

The vehicle body structure is considered as the

final application. There are total 4 center pillars

in the vehicle body structure, as shown in Fig. 8.

The condensed joint stiffness matrix is derived
from each center pillar model by using ClM

method. As for the above applications, three dif­
ferent finite element vehicle models are built to

solve natural frequencies and mode shape, as

listed in Table 8. The bending and twisting mode,

which are considered as the decisive behaviors of
a whole vehicle body structure, are analyzed as in

Fig. 9 and Fig. 10, respectively. The boundary

condition is assumed as the free condition. The

natural frequencies of each vehicle model are

listed in Table 9. The rigid model has about 22%

errors, while the ClM model has the negligible

errors within 4% in both the bending and the
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Table 8 The number of OOFs for the joint area of
vehicle body structure

Shell

I
Rigid ClM

model model model

Total number
2803 I 2103

of OOFs I
1947

Table 9 Natural frequency (Hz) of vehicle body
structure

Shell model ]Rigid model ClM model

Bending
40.70

[ 49.80 39.13
mode ! (22.36%) (-3.86%)

Twisting
41.61

50.84 39.88
mode (22.18%) ( - 4.16%)

Fig. 8 A detailed vehicle body structure with the
shell elements

Fig. 9 Overall bending mode shape of vehicle body
structure

Fig. 10 Overall twisting mode shape of vehicle body
structure

twisting mode .
As expected, the rig id model has much larger

dynamic stiffness than shell model. It is confirmed

that the CJM model provides strong correlation

with shell model in natural frequencies and mode

shapes.

8. Conclusion

In this study, a practical method for identifying

and expressing the joint characteristics in com­

plete matrix form is presented. The calculations of

displacements corresponding to pre-assigned

loads are not necessary in this method.
Whatever complex cross sections and curvature

may be, the joint characteristics of the vehicle

body structure can be very easily expressed in the

condensed matrix form. A joint stiffness matrix

was der ived . It seems that this method would be

considerably useful and practical, when not only
the static analyses of a vehicle body structure, but

also the dynamic analyses are involved. The

usefulness of this approach is confirmed by the

various example problems including the body

structure of the passenger vehicle.
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