See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/273159569

Ag-Grid/Graphene Hybrid structure for Large-Scale, Transparent, Flexible Heaters

ARTICLE in NANOSCALE · MARCH 2015

Impact Factor: 7.39 · DOI: 10.1039/C4NR06984F

CITATIONS		READS	
4		55	
8 AUTHC	DRS , INCLUDING:		
	Junmo Kang		Yonghee Jang
	Sungkyunkwan University	6	Sungkyunkwan University
	16 PUBLICATIONS 388 CITATIONS		8 PUBLICATIONS 56 CITATIONS
	SEE PROFILE		SEE PROFILE
	Jae-Boong Choi		Doyoung Byun
	Sungkyunkwan University	(See	Sungkyunkwan University
	191 PUBLICATIONS 1,123 CITATIONS		173 PUBLICATIONS 1,307 CITATIONS
	SEE PROFILE		SEE PROFILE

Supporting Information

Ag-Grid/Graphene Hybrid Structure for Large-Scale, Transparent, Flexible Heaters

Junmo Kang,^{a,b,†} Yonghee Jang,^{c,†} Youngsoo Kim,^d Seung-Hyun Cho,^e Jonghwan Suhr,^{e,f} Byung Hee Hong,^{a,g} Jae-Boong Choi,^{a,c,*} and Doyoung Byun^{c,*}

^a SKKU Advanced Institute of Nanotechnology (SAINT) and Center for Human Interface Nano Technology (HINT), Sungkyunkwan University, Suwon 440-746, Korea.

^b Departments of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.

^c School of Mechanical Engineering, Sungkyunkwan University, Suwon 440-746, Korea.

^d Department of Physics and Astronomy, Seoul National University, Seoul, 151-742, Korea.

^e Department of Polymer Science and Engineering, Sungkyunkwan University, Suwon 440-746, Korea.

^f Department of Engergy Science, Sungkyunkwan University, Suwon 440-746, Korea.

^g Department of Chemistry, Seoul National University, Seoul 143-747, Korea.

[†]These authors contributed equally to this work.

* Corresponding Author, e-mail: <u>boong33@skku.edu</u> and <u>dybyun@skku.edu</u>

[†] J. Kang and Y. Jang contributed equally to this work.

Fig. S1 The optical microscope images of the square-shaped Ag-grids at different line pitch (150, 250, 500, and 750 μ m) on (a-d) PET and (e-h) graphene/PET substrates. These images are taken under the same magnification.

Fig. S2 (a-c) Contact angles of water droplets on (a) 300 nm SiO₂/Si wafer, (b) graphene after transferred on SiO₂/Si, and (c) graphene/SiO₂/Si after annealing in Ar/H₂ at 300 °C. (d-f) AFM

images of (d) 300 nm SiO₂/Si wafer, (e) graphene after transferred on SiO₂/Si, and (f) graphene/SiO₂/Si after annealing in argon/hydrogen at 300 $^{\circ}$ C.

Fig. S3 3D profile by AFM images. (a) Ag line and (b) Ag line/graphene on the SiO₂/Si wafer.

Fig. S4 XPS spectrum of Ag-grid/graphene on PET substrate. (a) Wide scan of XPS of Aggird/graphene on PET substrate. High resolution XPS of (b) C 1s peak and (c) O 1s peak from an Ag-grid/graphene on PET substrate.

а 300 µm	Spect	trum 1	b Spectrum 4			
Element	Weight %	Atomic %	Element	Weight %	Atomic %	
ОК	63.00	91.99	ОК	0	0	
Ag L	37.00	8.01	Ag L	100.00	100.00	
Totals	100.00		Totals	100.00		

Fig. S5 SEM images and EDS data for (a) top and (b) middle of Ag-grid/graphene on PET substrate.

Fig. S6 Electrical and optical properties of the FET based on graphene and Ag-grid/graphene electrodes. (a) A schematic illustration of fabrication procedures of the Ag-grid/graphene

electrode. (b) Resistivity-gate voltage of a graphene-based device. The left insert shows the SEM image of the graphene-based device. The scale bar in SEM image is 150 μ m. The graphene-based device shows ambipolar filed effect and 10 V of dirac voltage. We determined the mobility

of graphene-based device from the equation: $I_D = \frac{W C_i}{L} V_D \mu (V_G - V_T)$, where $C_i = 1.08 \times 10^{-8}$ Fcm⁻², $V_D = 0.1$ V, W = 250 µm, and L = 50 µm. (c) Representative Raman spectrum (excitation wavelength: 514nm) of the graphene film. (d) The resistance of the Ag-grid and Ag-grid/graphene as a function of the channel length.

Fig. S7 Optical properties of Ag-grid and Ag-grid/graphene electrodes on PET substrates.

Fig. S8 Sheet resistance distribution of a large-area (a, b) graphene film and (c, d) a Aggrid/graphene film on glass substrates. (a, c) The sheet resistance histogram of the 30×35 cm² graphene film and Ag-grid/graphene film. The sheet resistances were measured at 288 points for graphene film and at 196 points for Ag-grid/graphene film. (b, d) The corresponding spatial distribution of sheet resistances.

Fig. S9 Steady-state temperatures of the Ag-grid heaters as a function of input power density.

Fig. S10 Statistical analysis of the temperature distribution in the (a-d) Ag-grid and (e-h) Ag-grid/graphene heaters at approximately 100°C. All data were measured at the steady-state temperatures.

Fig. S11 Comparison of the Ag-grid/graphene hybrid films depending on the layer numbers of graphene: (a) electrical and optical properties. (b) Time-dependent temperature response. (c) The average temperature and temperature distribution. (d) Statistical analysis of the temperature distribution.